Ensemble SWLDA Classifiers for the P300 Speller
نویسندگان
چکیده
The P300 Speller has proven to be an effective paradigm for braincomputer interface (BCI) communication. Using this paradigm, studies have shown that a simple linear classifier can perform as well as more complex nonlinear classifiers. Several studies have examined methods such as Fisher’s Linear Discriminant (FLD), Stepwise Linear Discriminant Analysis (SWLDA), and Support Vector Machines (SVM) for training a linear classifier in this context. Overall, the results indicate marginal performance differences between classifiers trained using these methods. It has been shown that, by using an ensemble of linear classifiers trained on independent data, performance can be further improved because this scheme can better compensate for response variability. The present study evaluates several offline implementations of ensemble SWLDA classifiers for the P300 speller and compares the results to a single SWLDA classifier for seven able-bodied subjects.
منابع مشابه
Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble lin...
متن کاملToward enhanced P300 speller performance.
This study examines the effects of expanding the classical P300 feature space on the classification performance of data collected from a P300 speller paradigm [Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol 1988;70:510-23]. Using stepwise linear discriminant analysis (SWLDA) to constru...
متن کاملFunctional Brain Connectivity as a New Feature for P300 Speller
The brain is a large-scale complex network often referred to as the "connectome". Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the 'feature extraction' methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct b...
متن کاملEliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI
BACKGROUND Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) generate weak SSVEP with a monitor and cannot use harmonic frequencies, whereas P300-based BCIs need multiple stimulation sequences. These issues can decrease the information transfer rate (ITR). NEW METHOD In this paper, we introduce a novel hybrid SSVEP-P300 speller that generates dual-frequency S...
متن کاملارزیابی و مقایسه روشهای الگوهای مکانی مشترک و قطعهبندی هوشمند در آشکارسازی مؤلفه P300
هدف از این مقاله ارزیابی دو روش قطعهبندی هوشمند و الگوهای مکانی مشترک به عنوان دو راهکار استخراج ویژگی در سیستمهای آشکارسازی مؤلفهP300 است. بدین منظور، یک سیستم مبتنی بر بازشناسی آماری الگو طراحی شد. در این سیستم که با دادگان P300-Speller مسابقات BCI 2005 کار میکند، پس از اعمال پیشپردازشهای اولیه، دو دسته ویژگی قطعهبندی هوشمند و الگوهای مکانی مشترک از دادگان استخراج گردید. این ویژگیها از...
متن کامل